91极品欧美视频-少妇视频在线播放-午夜爱爱爱爱爽爽爽网站-日韩av一国产av一中文字慕-ass日本-寂寞的日本美妇-麻豆av在线-中文字幕在线资源-亚洲国产剧情-欧美a级理论片-人妻aⅴ中文字幕-免费av观看-欧美福利网站-免费xxxxx在线观看网站软件-久久久久久久久久久久久久久久久久久久

如何設計出高能效、高可靠性和高功率密度的同步降壓穩壓器

鉅大鋰電  |  點擊量:0  |  2020年02月26日  

同步降壓穩壓器是一種常用的電源,隨著各類應用要求的不斷提高,行業越來越趨向于追求高能效、高可靠性、高功率密度的設計方案。比如應用于無線局域網的負載點(poL)電源,輸入電壓越來越寬,工作頻率、功率密度也越來越高,隨著技術的發展,甚至可將整個電源系統集成在單個封裝中。同步降壓穩壓器其電路結構本身非常簡單,但工程師要完成高效可靠的同步降壓穩壓器的設計,還是有著不少的技術挑戰,必須對穩壓器電路的各種工作狀態有著非常深入、透徹的了解,同時還需完成大量的計算工作。本文將介紹快速設計出高效可靠的同步降壓穩壓器的技術,以及安森美半導體的powerSupplyWebDesigner在線設計工具,幇助工程師解決所面臨的技術挑戰。


動態性能的設計


設計一個可靠的同步降壓穩壓器,首先必須滿足其動態性能指標如負載響應能力。而輸出電感、電容的選擇會直接影響到穩壓器的動態性能,所以同步降壓穩壓器的功率電路設計通常是從選擇輸出電感和電容開始。


1、選擇電感


從電路設計的角度,為實現快速瞬態響應,必須選擇盡可能小的輸出濾波電感和最小的輸出電容。然而小的電感值會增加電感電流紋波,導致電感中有效電流值增加而使得導通損耗增大,同時所導致的峰值電流的增加,也會大大增加控制管的開關損耗。


使用大電感,可減小電感中的電流紋波,從而降低穩態輸出電壓紋波,所導致的低峰值電流也有助于降低MOSFET的開關損耗,但電感太大不僅會導致相對較大的直流阻抗,產生較高的電感損耗,還會降低穩壓器的負載響應能力,從而降低穩壓器的動態性能。


為選擇適當的電感,通??杉俣娏骷y波ILO為電感平均電流的30%,然后根據下面的公式直接計算出合適的電感值。


2、選擇電容


最小輸出電容的選擇必須考慮到兩個因素:一是穩態下輸出電壓紋波的要求,二是當負載從滿載到空載突變時所允許的最大輸出過沖電壓。


但輸出電容也不是越大越好,太大的輸出電容及電容本身的寄生串聯電阻會影響到穩壓器的輸出電路的性能以及當負載突變時穩壓器的瞬態響應能力。


通常,輸出電容應首選:一,有較小等效串聯電阻(ESR)的電容,以便降低交流損耗和輸出紋波;二,有較小等效串聯電感(ESL)的電容,以便在負載突變時抑制輸出偏差。


能效設計


作為控制管和同步整流開關,功率MOSFET廣泛用于降壓穩壓器中。它們消耗大部分的損耗功率,通常決定了穩壓器的整體能效。


1、選擇最佳的MOSFET


針對不同的設計要求,比如是想要成本最低,還是想要損耗最低,又或是想要封裝盡可能小等等,需要選擇不同的MOSFET。


考慮到額定電流通常與MOSFET成本成正比,有的工程師會根據額定電流的大小來選擇MOSFET,希望以此來控制產品成本;為最大限度地降低導通損耗,有的工程師則會選擇具有最低RDS(ON)的MOSFET;還有的根據質量因數(FOM)=RDS(ON)xQg(TOT)來進行選擇,希望能平衡導通損耗和開關損耗這些依賴于參數的選擇方法其實都有不足。使用額定電流及電壓的方法沒有考慮具體的開關損耗;而最低RDS(ON)法,成本可能會佷高,且MOSFET寄生電容可能導致更低的能效;FOM法則不能預測能效或成本。


因此,無論是為了降低成本,提高能效,還是為了設計更緊湊的產品,必須完整計算出電路損耗及工作溫度,才能確保設計出的產品能工作在可靠的工作溫度范圍,達到最佳的能效。


2、計算MOSFET的損耗


在計算損耗前,需要先了解MOSFET在同步降壓穩壓器中的工作機制。圖1所示為簡化的穩壓器的功率電路原理圖,其中Q1為控制管,Q2為同步管。


圖1:簡化的穩壓器的功率電路原理圖


同步降壓穩壓器主要有3種工作狀態,其開關順序是A-B-C-B-A,如圖2所示。


圖2:同步降壓穩壓器的開關順序


狀態A:控制管導通,輸入電流經過控制管、電感傳送到輸出端。


狀態B:控制管和同步管同時關斷,電感儲能通過同步管的寄生二極管放電,傳送到輸出端。


狀態C:同步管導通,電感儲能通過同步管放電,傳送到輸出端。


MOSFET的功耗包括控制管和同步管的導通損耗(pCOND)、控制管的開關損耗pSW、同步管的開關損耗、控制管和同步管的柵極驅動損耗pRgate。在140kHz頻率下導通損耗幾乎占總功耗的70%。隨著頻率升高,總功耗中逐漸以開關損耗(pSW)為主。


1).控制管Q1的損耗計算


Q1工作在硬開關條件下,在小占空比或高頻(>MHz)時以開關損耗為主,開關性能受同步管Q2影響:快速di/dt可導致反向恢復損耗增加,快速dv/dt有可能引起Q2誤導通,造成Q1、Q2直通現象,導致額外的損耗。另外,值得注意的是,由Q2體二極管導致的反向恢復損耗、Q2輸出電容導致的輸出電容損耗主要耗散于控制管Q1上[Ref.1,2]。因此,在計算Q1的開關損耗和溫度時必須綜合考慮到Q2的影響。另外,Q1的導通阻抗隨結溫上升而上升。結溫越高,導通阻抗越高,導通損耗就越高,使得結溫進一步上升。因此,對Q1的導通損耗必須循環反復計算,直到管子的溫度計算結果穩定下來。


對于高頻應用(>MHz),控制管Q1的選用應針對降低開關損耗進行優化。Q1損耗的計算公式如下:


Q1的導通損耗pCOND隨輸入電壓(VIN)增加而降低,開關損耗pSW隨VIN增加而增加,柵極驅動損耗pRgate與VIN無關。當VIN為最大或最小時,Q1的總損耗最大。


2).同步管Q2的損耗計算


Q2工作在零電壓開關(ZVS)條件下,當Fsw<1.5MHz時通常以導通損耗為主。在選擇Q2時,建議選用:


具有低FOM(低Rds_onxQgs)的MOSFET,以降低Q2的總損耗


低Qgd/Qgs比率(<1)以防止快速dv/dt引起Q1、Q2的直通現象


對于高頻應用,選用集成肖特基體二極管的MOSFET,以降低反向恢復損耗以及二極管導通損耗


Q2的損耗計算公式如下:


Q2的導通損耗pCOND隨VIN升高而增加,開關損耗pSW只是隨著VIN升高而略微增加。而Q2的寄生二極管導通損耗pDcond和柵極驅動損耗pRgate都與VIN無關。因此,當VIN為最大時,Q2損耗最大。


綜上所述,當VIN為最大或最小時,Q1+Q2總的損耗最大。進行計算時,必須同時考慮Q1和Q2的相互影響。


設計示例


以下通過一個設計示例,演示如何完成控制管Q1和同步管Q2的優化選擇。如果要設計一個輸出為5V、10A的同步降壓穩壓器,其輸入電壓VIN=8---16V,工作頻率FSW=350kHz。考慮到20%的安全裕量及開關節點的電壓振蕩,可初步選擇額定電壓30V以上、額定電流IDCONT額定值10.3A的MOSFET。然后,根據具體的應用要求,確定MOSFET的封裝要求。為簡化演示,我們選擇采用5x6mmpQFN(power56)封裝的器件。綜合以上選擇條件,安森美半導體的產品陣容中有超過150個器件供選擇,我們需再進一步從中挑選出合適的Q1和Q2。同樣為簡化演示,我們將列出用于Q1和Q2的各12個器件。


對于Q2,VIN=VINMAX時損耗最大。圖3所示的12個器件中,FDMS7656AS有最低的最大損耗。但由于Q2寄生參數會影響Q1的開關損耗,最小Q2損耗通常并不意味著最佳的總能效。必須比較Q1及Q2的總功耗來找到最佳的Q2以實現最高能效。


對于Q1,VIN=VINMAX或VINMIN時損耗最大。圖4所示的12個器件中,FDMS8027S和FDMS8023S分別在VIN=VINMAX和VINMIN時有最低的最大損耗的Q1。


為優化轉換器能效,首先根據VIN選擇損耗最小的Q1,然后選擇產生損耗最小的Q2。本例中,無論VIN最小或最大,最佳的Q2是相同的,都為FDMS7658AS(但并不總是如此,特別是具有寬VIN范圍或高FSW時)。


由于當VIN=VINMAX或VINMIN,Q1+Q2總的損耗最大,我們需對總的損耗進行對比,選擇最大損耗最低的最佳組合。如圖6所示,選用FDMS8027S為Q1,FDMS7658AS為Q2時,Q1+Q2的最大損耗最低。


快速設計高效可靠的同步降壓穩壓器的工具:powerSupplyWebDesigner


上述設計示例表明,在設計同步降壓穩壓器時,為選擇最佳的Q1和Q2需進行大量繁瑣復雜的計算。為幫助工程師快速完成高效可靠的設計,安森美半導體提供了強大的在線設計平臺powerSupplyWebDesigner,加速FET優化。


通過powerSupplyWebDesigner里的SynchronousBuck功率回路損耗分析工具powerTrainLoss,工程師可輕松對比合格MOSFET器件的數據及性能,自動排除超過TJ限制的器件,選擇設計裕量和工作溫度范圍,選擇單個或雙重封裝的MOSFET,根據額定電壓、電流或封裝篩選器件,添加并聯器件和柵極阻尼電阻,立即計算出不同的Q1+Q2組合的損耗,。在完成選定Q1和Q2后,工程師可獲得輸入電壓笵圍和負載笵圍內功率回路的各類損耗和能效曲線,并根據各類曲線和功率回路能效匯總表針對不同的設計進行完整的分析、比較(圖8]。最后,powerSupplyWebDesigner可提供pNG格式的電路原理圖、Excel格式的器件清單、完整的pDF設計報告,工程師可在線保存,便于以后參考或修改。


相關產品

主站蜘蛛池模板: 中国一区二区视频| 男女那个视频| 成人区视频| 91久久奴性调教| 国产精品色婷婷| 在线观看成人av电影| 精品一区二区电影| 色天天色| 国产欧美一区二区白浆黑人| 青青草55| 好吊妞视频这里只有精品| 国产美女久久| 国产精品美女一区| 美女很黄很黄是免费的| av大全在线观看| 美女视频黄a| 国产老女人精品毛片久久| 黑人精品一区二区三区| 欧美色图亚洲天堂| 性色av无码一区二区三区人妻| 国产黄视频在线观看| hongkongdoll无删减正在播放| 国产免费福利| 99热日本| 欧美一级二级视频| 日本激情在线| 魅男man浴室裸体gay摄像| 激情网站在线播放| 免费观看一级一片| 欧美日韩国产三区| 大咪咪网站| 欧美第一视频| 日本熟妇色xxxxx日本免费看| 丝袜制服一区二区三区| 午夜网站在线观看| 国产精品一区二区免费看| 欧美成人一区二区视频| 成年人在线视频观看| 四虎av影视| 97精品国产97久久久久久春色| 一级a毛片免费观看久久精品| 欧美激情性生活| 理论片福利理论片高清| 河北彩花av在线| 伊人影片| 亚洲黄网av| 亚洲中文字幕无码爆乳av| 性色浪潮av| 日日夜夜精品网站| 黄色性小说| 亚av在线| 欧美三级韩国三级日本三斤| av成人在线播放| 四虎影院新网址| 欧美三级电影免费看| 欧美一级特黄aa大片| 自拍视频一区二区| 成人国产黄色| 另类小说第一页| 小舞被调教成奶奴魅魔视频| 九九热视频免费在线观看| 九色直播| 麻豆影视大全| 日韩五码电影| 日本三级视频| 老色批av| 欧美性大战久久久久久久蜜桃| 琪琪色成人| 尤物在线观看视频| 3p视频在线| 少妇一区视频| 中文字幕四区| 天堂网wwww| 精品网址| 欧美性生交xxxxx| 国产拍拍视频| 在线观看中文av| 欧美激情视频一区二区| 欧美大片高清| 伦理av在线| 国产精品成人无码| 姐妹5全集免费观看在线| 一级大片免费| 少妇av| 潘金莲一级淫片免费看| 亚洲91网| 欧美日国产| 国产中文字幕一区二区| 高跟91娇喘| 少妇呻吟声| 艳妇荡乳欲伦69影片| 日韩中文字幕免费在线观看| 激情亚洲网| 毛片av中文字幕一区二区| 人妻洗澡被强公日日澡电影| 一区二区看片| 久久精品2019中文字幕| 国产传媒在线播放| 污视频网站在线|